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Theoretical predictions for hadron collider physics

@ LHC is running, data are collected, many publications already present, a lot of

experimental effort...

@ and Tevatron is still running too!
@ Main goals: understand EWSB mechanism (Higgs boson) and search for new Physics.
@ Many steps to achieve this goal:

@ Understand the detectors.
@ Rediscover what we already know.

[ATLAS tt-pair candidate]

- 1| CMS Experiment at LHC, CERN Jet1
Run 133450 Event 16358963 s
Lumi section: 285 N
Sat Apr 17 2010, 12:25:05 CEST | /
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[CMS dijet event]

9 Disentangle signal and backgrounds (analysis strategies).
@ Compare signals with best available predictions.

traditionally used Th. inputs: parton-level calculations / Monte Carlo event generators.

J



NLO vs. SMC’s (LO + Parton Shower)
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NLO

NLO accuracy for inclusive observables
(not only rates).

reduced theoretical uncertainty (less
sensitive to ur and pp choices).

accurate shapes at high-pr (for the 1st
emission).

wrong shapes in small-pr region (or
generically where you want to resum
logs).

description only at the parton level.
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NLO vs. SMC’s (LO + Parton Shower)

> NN N e

NLO

NLO accuracy for inclusive observables
(not only rates).

reduced theoretical uncertainty (less
sensitive to ur and up choices).

accurate shapes at high-pr (for the 1st
emission).

wrong shapes in small-pr region (or
generically where you want to resum

logs).

X description only at the parton level.
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N

SMC's

total normalization accurate only at LO.
poor description of high-pt emissions.

Sudakov suppression of small pr
emissions (LL resummation, via parton
showers).

simulate high-multiplicity events at the
hadron level, modelling also NP effects.

largely used by experimental
collaborations at various stages.

natural to try to merge the 2 approaches, keeping the good features of both.

real emissions included in both approaches
@ NLO: exact n + 1-body matrix element.

@ PS’s: multiple emissions in the collinear approximation.

main problem: avoid to double-count them !

many proposals, currently two fully tested solutions: MC@NL O [Frixione, Webber 2001] and PONHEG
[Nason 2004].



the POWHEG method [1/3]

We start by looking to the formula for a NLO calculation and for the first branching of a LO
Parton Shower. J

@ NLO cross section:

donio = dPn{ B(®n) + V(®n) + [R(@ns1) = C(@ns1)]d, |

finite

where

Ay = dDnd®, | Or = {t, 2,0} , V(Pn) = Viso(®n) +/d<I>TC(«i>n,d>r)

finite
and
R(®, s 1 d N
B(®nt1) d®, — (a—fP(z)) dt dz i when ¢ — 0 coll. factorization
B(®n) 2m t 2w
@ SMC first emission:
s 1
dosic = B®4) dPu | Altucto) + Altmas, 1) 52 1 P(:) a0,
us

tmax 1
A(tmax,t) = exp {—/ do!. ;—S PP(z’)} SMC Sudakov form factor
t s



the POWHEG method [2/3]

Idea: Modify dosnic in such a way that, expanding in as, one recovers the NLO cross section J

@ With the substitutions
B(®n) = B(®n) =B(<I>n)+V(<1>n)+/[R(<I>n+1)—C(<1>n+1)] d®,

A(tma:u t) = A(Pn; k'l‘) =P {_/ %

we get the PONHEG “master formula” for the hardest emission:

O(kp — k) d<I>;} POWHEG Sudakov

= i R(Pn, Dr
dopow = B(q)n) dd, {A(¢n7 kfrnln) + A((I)n,:, kT)ﬁd‘br}

[Nason, JHEP 0411:040,2004]
@ generated events have positive weight: B(®,,) is usually positive:
POsitive Weight Hardest Emission Generator
@ to avoid double-counting, subsequent emissions must be pr vetoed !
@ large k1 accuracy preserved: since A(kt) — 1,
R(®n+1)
B(®,)
@ small k1 LL accuracy of SMC'’s preserved:
R(®,,, D, as
7(3((_1)") )d<I>T ~ o
@ inclusive observables have NLO accuracy

dopow ~ B(‘:I)n) X APy, 41 ~ R(¢n+1) dPy,41 X (1 + O(Ots))

1 d
—P(z)dtdz ¢
t 27



the POWHEG method [3/3]

Accuracy of the POAHEG Sudakov J

logs that exponentiate (~ B) are resummed, since they = for simple processes, should have
are contained in R/B: NLL accuracy:

@ LL OK: double soft and collinear logs are included [/]

@ single collinear logs (NLL) are also included [/]
to go to full NLL: ~
%
@ bremsstrahlung scheme: o, — a, (1 + 52 K) V1

"
T

@ include soft non-collinear logs (~ B;;), that in general
don't exponentiate. X

do/dp

POWHEG+HERWIG
HqT (NLL resum.)
HqT (NNLL resum.)
POWHEG

@ included in PONHEG if no more than 3 colored particles at
the Born level. V1

10

@ recover these logs in the large N¢ limit shown to be o [GeV]
possible but not explicitely implemented until now.
Role of the subsequent shower )

@ itis vetoed: therefore it is responsible for the accuracy of radiation softer than the 1st one.

@ in an angular ordered shower, the hardest emission is not the first: a truncated shower is
needed to restore soft wide-angle radiation effects.



the POWHEG BOX framework

@ Although it may look easy, the actual implementation of the algorithm is not
straightforward. [Frixione,Nason,Oleari, JHEP 0711:070,2007]

@ Our automation of the algorithm led to the PONHEG BOX package, which has been
available for more than 1 year now.

@ General features:

@ automation of the PONHEG algorithm using the FKS subtraction scheme.
@ all previous implementations and new ones included in a single and public
framework:
V, H(gg fusion and VBF), QQ, single-top (s, t, Wt), ZZ,V + j, jj, WWjj,

9 it produces LHE files, ready to be showered through HERW Gor PYTHI A.
@ once needed ingredients are provided, it can be used as a “black-box”, although all
the details were carefully described.
[Alioli,Nason,Oleari,ER, JHEP 1006:043,2010]

@ Other features:

9 we want to keep as much as possible the original goal of independence from the
parton-shower. If needed, will try to refine the interface.

9 until now effects of neglecting truncated-shower (when HERW Gis used) were found
to be negligible. If needed, this is a point where there is space for improvements.

@ we will continue keeping our code completely available for interested theorists, and if
you implement your process, we would be happy to include it in the repository.

http:// powhegbox. mb.infn.it


http://powhegbox.mib.infn.it

Jet pair production with PONHEG [1/3]

@ Dijet production is by far the most frequent hard scattering in hadronic collisions.
@ from the technical point of view, it is up to now the more complicated process
implemented in PONHEG.
This means also a serious test for the PONHEG BOX program.
@ Allingredients have been known since the late 80's: [Ellis, Sexton], [Kunszt, Soper]
9 2 — 2and 2 — 3 tree-level amplitudes
@ virtual corrections
@ color-linked amplitudes
9 2 — 2 amplitudes in the planar limit, to assign color structure before showering.
@ Check with independent NLO computation by Frixione-Ridolfi:
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Jet pair production with PONHEG

[2/3]

@ Divergent at tree-level !

@ In a NLO computation: observable O is IR-safe, and vanish fast enough when 2 singular
regions are approached (i.e. we ask for 2 or more jets)

= just integrate and fill histograms

@ In POMNHEG, we start by generating 2 — 2 kinematics:

= a generation cut is needed

103 —

100 —

do/pf* [pb/GeV]

LHC 7 TeV
[ | Solid: 1M events, weighted sample
0-6 |- Dashes: 3.3M events, gen. cut = 2
r Dots:l 5M e\fents, grn. c\Tt = 7? Ge!
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2 options:

@ choose generation cut < analysis cut,
and check that results don’t depend from
small variations

@ weighted generation:
B(®2) — B(®2) F(kr)

;2 3
Flkr)= | 5L
(k) <k+k>

= small k7 suppression
= event weight: F (k)™ !



Jet pair production with PONHEG

[3/3]

@ for inclusive observables, we obtain the expected agreement between NLO and PONHEG
POWHEG = first emission (colored line)

@ however,
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Inclusive dijet processes and the role of cuts

@ The most inclusive measurement in jet production is the total cross section. It depends on
the cuts used to define jets.
@ Despite its simplicity, nontrivial QCD effects take place also when considering the simple
observable o(A), where
ET,Q > ET,cut ET,I > ET,cut + A
@ From simple considerations on phase space, we expect ¢/ (A) = do/dA < 0, instead

a{ub)

NLO prediction has a peak.
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@ Of course, experimentally there is nothing “special” in using symmetric cuts, as data

above show.

Why this problem?



Inclusive dijet processes with symmetric cuts [1/2]

@ as first noticed by Frixione-Ridolfi, NLO curve alone is “wrong” when symmetric cuts are
applied = unbalanced cancellation of soft-collinear emissions close to the cut.

@ argument by Banfi-Dasgupta (for DIS): o(Er,.,A) = f ® Co(Er1,c, A)
leading-order

Co(A) / Do Ms|O(Ery — (Erc + A)O(Era — Br..)

= [ @ T PO — (Bro +2))

Ch(A) = —/dQET,l T |Ma|?8(kps — (Br.o +A)) =o' <0

real + virtual emission, in the soft+coll limit:
CH@) ~ = [ e JIMS(rs = (Bro +8)) x [ d,S(k)[O = k)~ 1

where
9 |kra| = [Er,1 — BT
9 |kr | < A neededto have Ep o > Er .
9 assume k; not recombined with k7 1 or kr o

NLO, in the soft limit: CY;; ,(A) = C{(A) WnrLo(A)

Wxro =1+ /d@rS(kr)[G(A —kra) =1 =1— c% log? (%)

need of resummation to restore the correct behaviour J




Inclusive dijet processes with symmetric cuts 212]

LHC 7 TeV " Egom = 40 GeV
——Eq e = 100 GeV (x30)

@ Observed the same pattern of FR in dijet
hadroproduction with PONHEG

@ Resummation performed by the shower works
well (here shown PONHEG first emission).
Notice that in this case it's a LL resummation.
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comparison with Tevatron data
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comparison with ATLAS data
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ATLAS studies: m;; and pr

Program already used in ATLAS-CONF-2011-038,-047,-056,-057 CMS-PAS-FWD-10-003,-006
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ATLAS studies: activity between jets
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Conclusions and outlook

@ Many 2 — 2 SM processes are available within the POANHEG BOX package.
@ Implementing jet-pair was a serious test for our automation of the algorithm.

@ Together with other POAHEG implementations (in HERW G++ and SHERPA) and with
MC@\LOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS

accuracy.
@ 2 — 3 implementations are , and a 2 — 4 implementation was already
possible.
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Conclusions and outlook

@ Many 2 — 2 SM processes are available within the POANHEG BOX package.
@ Implementing jet-pair was a serious test for our automation of the algorithm.

@ Together with other POAHEG implementations (in HERW G++ and SHERPA) and with
MC@\LOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS
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@ 2 — 3 implementations are , and a 2 — 4 implementation was already
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Conclusions and outlook

Many 2 — 2 SM processes are available within the POANHEG BOX package.
Implementing jet-pair was a serious test for our automation of the algorithm.

Together with other PONHEG implementations (in HERW G++ and SHERPA) and with
MC@NLOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS
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@ 2 — 3 implementations are , and a 2 — 4 implementation was already
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Conclusions and outlook

@ Many 2 — 2 SM processes are available within the POANHEG BOX package.
Implementing jet-pair was a serious test for our automation of the algorithm.

@ Together with other POAHEG implementations (in HERW G++ and SHERPA) and with
MC@NLOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS

accuracy.
@ 2 — 3 implementations are work in progress, and a 2 — 4 implementation was already
possible.
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Conclusions and outlook

©

Many 2 — 2 SM processes are available within the POANHEG BOX package.
Implementing jet-pair was a serious test for our automation of the algorithm.

Together with other PONHEG implementations (in HERW G++ and SHERPA) and with
MC@\LOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS
accuracy.

2 — 3 implementations are , and a 2 — 4 implementation was already
possible.
Understand the origin of the disagreement with ATLAS dijets data is

In general, the validation of the code will be demanding for more complicated processes:

= code running properly # implementation fully understood
= this could be especially relevant for processes with multijets

Outlooks:

]

o
o

Many interesting processes yet to be implemented (DY with EW corrections, V+multijets,
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